For Consumers Of:

Dekalb-Jackson Water Supply District PWS ID: AL0001796 21700 AL Highway 117 Ider, AL 35981 (256) 632-2254

By Order Of (EPA) U.S. Environmental Protection Agency and (ADEM) Alabama Department of Environmental Management

2022 WATER QUALITY REPORT

THE EPA WANTS YOU TO KNOW

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

In order to insure that tap water is safe to drink, the U.S. Environmental Protection Agency (EPA) prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

All drinking water, including bottled water, is reasonably expected to contain at least small amounts of some contaminants. THE MERE PRESENCE OF A CONTAMINANT DOES NOT, NECESSARILY, INDICATE THAT THE WATER POSES A HEALTH RISK. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA and Center for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the EPA Safe Drinking Water Hotline.

EPA Safe Drinking Water Hotline Call: (800) 426-4791 or visit www.epa.gov/safewater

MEET WITH US

Our water system is governed by a Board of Directors appointed by the local county government and is managed by a system manager responsible to the Board. We want you, our valued customer, to be informed about your water utility. You can attend open Board meetings on the 3rd Monday of each month at 5:00 pm CST at our office located at 21700 AL Highway 117, Ider, AL, 35981.

Our Board of Directors are:

Gregg Harris - Chairman, William Dalton - Secretary/ Treasurer, William Black - Member, Johnny McAllister - Member, Dawn Pettengill - Member, Landon Lewis – Member, and Terry York – Member.

DID YOU KNOW?

Section 13A-8-23, Code of Alabama, tampering with the availability of water, constitutes a Class C felony if the theft amount exceeds five hundred dollars (\$500) in value and a Class A misdemeanor if the theft amount is less than or equal to five hundred dollars (\$500) in value, as provided by the state criminal code, and upon conviction, punishable as prescribed by law.

NO ONE IS AUTHORIZED TO OBTAIN WATER FROM FIRE HYDRANTS UNLESS:

- A) The user is a full-time or volunteer fire department member responding to an active fire or scheduled drill.
- B) A customer or entity has written authorization to use water from a fire hydrant and has made satisfactory financial arrangements for payment of all such water.

Due to the lack of compliance with said rules, our Board has authorized all fire hydrants to be locked. A key has been given to your local fire departments to remain in each fire truck and used only in the event of a fire emergency. All other fire hydrant use may only be conducted by water personnel or by approved written documentation by management at specified locations so that water may be measured for payment. Unauthorized use will be considered a direct violation and actions will be pursued for any damages occurred and/or water use. Please report any violations to Dekalb-Jackson Water Supply District at (256) 632-2254.

Dekalb-Jackson Water Supply District is pleased to share the following annual Water Quality Report with our customers. This Water Quality Report is meant to describe, in full detail, the quality of the water provided to you between January 1, 2022 and December 31, 2022. For this year, as in years past, our water system has surpassed the strict regulations of both the State of Alabama and EPA, which require all water suppliers to deliver this annual Water Quality Report.

If you have any questions about this report or concerning your water utility, please contact Donna Bolton at (256) 632-2254 or come by our office, located at 21700 AL Highway 117, Ider, AL, 35981.

Office Hours: Monday – Friday 7:30 am to 4:00 pm

You may pay your bill online at <u>www.djwaterusmgas.com</u> or by telephone at (256) 632-2254 and press "1". Bank draft forms are also available in our office or on our website listed above. If you choose to mail in your payment, please address payments to PO Box 280, Flat Rock, AL, 35966.

NOTIFICATION OF NON-COMPLIANCE

For 2022, we are pleased to report that your drinking water has been delivered to you with the highest quality and concern for safety. Our System has maintained system-wide DBP compliance since the May 2021 sampling quarter. However, Our System did incur a reporting non-compliance for failure to submit the July 2022 TOC (Total Organic Carbon) results by August 10, 2022. This reporting non-compliance was an error by our testing Lab in reporting our results in the specified period of time. The results were reported the following day after the Lab discovered the error.

ABOUT LEAD AND COPPER

With the recent issues in the news of lead and copper problems in US cities such as Flint, MI, we want to take this opportunity to assure you that we take great care to protect your water from being corrosive and creating these problems in our system. While lead and copper most often comes from the piping and fixtures in your home, our responsibility is to provide your home with water that doesn't leach those metals out of your plumbing. We are pleased to report that our system has had no instance of a lead or copper problem either in our treatment plant, our distribution system or any homes on our grid. Learn more at www.epa.gov/dwreginfo/lead-and-copper-rule.

QUALITY CONTROL

Our utility has prepared this custom report in accordance with state and federal law in order to provide you with the most pertinent information possible about the quality of your water. You can visit the EPA website online at www.epa.gov/safewater or for additional information on understanding your drinking water quality visit the ADEM website online at https://adem.alabama.gov/programs/water/waterquality.cnt.

ABOUT YOUR SOURCE WATER

In **2022**, our plant produced approximately **510,650,000** gallons of water. Our water source is surface water pumped from the Tennessee River. Your water is treated using mixing, flocculation, sedimentation, and membrane filtration with chemical treatment within the process to remove or reduce harmful contaminants that may come from the source water. The process of preparing source water for consumption in this country is not, necessarily, difficult, but it is highly regulated – nationally by the EPA and locally by state environmental agencies.

ADEM (Alabama Department of Environmental Management) has required that all water systems complete a SWAP (Source Water Assessment Plan). The **SWAP** is composed of four distinct activities: delineation of the source water assessment area, contaminant inventory, susceptibility analysis and public awareness. Dekalb-Jackson Water Supply District has completed each required component of the SWAP and ADEM has approved our plan. Our water supply has received a rating of LOW for susceptibility of contamination. You may view the **SWAP** at the water department office.

A VULNERABLITY ASSESSEMENT has been conducted to help protect the water system from intentional damage. An EMERGENCY RESPONSE PLAN has also been completed in the event of an emergency. Certifications have been submitted to the EPA.

HELP US PROTECT YOUR WATER

We ask that you be considerate when accidents or Mother Nature hinder our efforts to supply your water. Regardless of the time or the weather, our water personnel are on call and working to keep your water flowing. Please help us to protect our water sources, which are a vital part of our lives and our future, by following a few simple tasks. The average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost or no-cost ways to conserve water.

- ♦ Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- ♦ Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- ♦ Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month.
- ♦ Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- **♦** Water plants only when necessary.
- Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace.
- ♦ Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it & during the cool of the day.

Visit www.epa.gov/watersense for more information.

WATER WATER EVERYWHERE?

Customer water leaks can be costly and time consuming for the customer. As many of you may not be aware, leaks can be deceptive. Did you realize that a ¼" stream of water running continuously with 60 psi over a month's time can lose 400,000 gallons of water? There are several things a customer can do to help prevent leaks, but sooner or later there will be an unpreventable incident. If your bill is up and you are not aware of a problem, the following may help you:

- 1) Make sure that water is not being used in the residence and go out to your meter.
- 2) If the dial on the meter is turning or leak indicator hand is moving, and you have a cut-off at the residence, turn off the water at your cut-off. If the meter is still turning, the leak is between the meter and the cut-off. If the dial on the meter is not turning, this tells you the leak is after the cut-off to the residence.

 In addition, if you notice any water leaks in your area, please do not hesitate to call our office. Help keep costs down for all!

CALL BEFORE YOU DIG

Pipelines may be located anywhere. This is why it is important to know where they are before digging for any reason. When digging, excavating, drilling or moving earth in any way that could damage utility

Know what's **below. 811** before you dig.

pipelines, YOU MUST CONTACT ALABAMA ONE CALL BY DIALING 811 NO LESS THAN TWO DAYS BEFORE STARTING THE EXCAVATION. This will help avoid costly damage or injury. Every dig job requires a call, even small projects like planting trees or shrubs. It you hit an underground utility line while digging, you can harm yourself and those around you, disrupt service to an entire neighborhood and potentially be responsible for fines and repair costs. Smart digging means calling 811 before each job. Whether you are a homeowner or a professional excavator, one call to 811 gets your underground utility lines marked for free. Don't assume you know what is below. Protect yourself and those around you.

PRIMARY LIST OF DRINKING WATER CONTAMINANTS

At high levels some primary contaminants are known to pose a health risk to humans. This table provides a reference of those contaminants and their safe MCL.

CONTAMINANT	MCLG	MCL	UNITS	
MICROORG	ANISMS			
Cryptosporidium	0.000	TT	ppm	
Giardia lamblia	0.000	TT	ppm	
Heterotrophic plate count	NA	TT	ppm	
Legionella	0.000	TT	ppm	
Total Coliforms (including fecal coliform)	0.000	5	% total	
Turbidity	NA	TT	ppm	
Viruses (enteric)	0.000	TT	ppm	
DISINFEC	TANTS			
Chloramines (as Cl2)	4.0	4.0 4.0		
Chlorine (as Cl2)	4.0	4.0	ppm	
Chlorine dioxide (as ClO2)	0.8	0.8	ppm	
DISINFECTION B	YPRODU	CTS		
Bromate	0.000	0.010	ppm	
Chlorite	0.800	1.000	ppm	
Haloacetic acids (HAA5)	NA	0.060	ppm	
Total Trihalomethanes (TTHMs)	NA	0.080	ppm	
INORGANICC	HEMICAL	S		
Antimony	0.006	0.006	ppm	
Arsenic	0.000	0.010	ppm	
Asbestos (fiber > 10 micrometers)	7.000	7.000	MFL	
Barium	2.000	2.000	ppm	
Beryllium	0.004	0.004	ppm	
Cadmium	0.005	0.005	ppm	
Chromium (total)	0.100	0.100	ppm	
Copper	1.300	AL=1.3	ppm	
Cyanide (as free cyanide)	0.200	0.200	ppm	
Fluoride	4.000	4.000	ppm	
Lead	0.000	AL=0.015	ppm	
Mercury (inorganic)	0.002	0.002	ppm	
Nitrate (measured as Nitrogen)	10.000	10.000	ppm	
Nitrite (measured as Nitrogen)	1.000	1.000	ppm	
Total Nitrate + Nitrite	10.000	10.000	ppm	
Selenium	0.050	0.050	ppm	
Thallium	0.0005	0.002	ppm	
ORGANIC CH	EMICALS	<u> </u>	**	
Acrylamide	0.000	TT	ppm	
Alachlor	0.000	0.002	ppm	
Atrazine	0.003	0.003	ppm	
Benzene	0.000	0.005	ppm	
Benzo(a)pyrene (PAHs)	0.000	0.0002	ppm	
Carbofuran	0.040	0.040	ppm	
Carbon tetrachloride	0.000	0.005	ppm	
Chlordane	0.000	0.002	ppm	
Chlorobenzene	0.100	0.100	ppm	
2,4-D	0.070	0.070	ppm	
Dalapon	0.200	0.200	ppm	
1,2-Dibromo-3-chloropropane (DBCP)	0.000	0.200		
1,2-Diorollio-3-Chioropropalic(DBCP)	0.000	0.200	ppb	

CONTAMINANT	MCLG	MCL	UNITS				
ORGANIC CHEMICALS (continued)							
o-Dichlorobenzene	0.600	0.600	ppm				
p-Dichlorobenzene	0.075	0.075	ppm				
1,2-Dichloroethane	0.000	0.005	ppm				
1,1-Dichloroethylene	0.007	0.007	ppm				
cis-1,2-Dichloroethylene	0.070	0.070	ppm				
trans-1,2-Dichloroethylene	0.100	0.100	ppm				
Dichloromethane	0.000	0.005	ppm				
1,2-Dichloropropane	0.000	0.000 0.005					
Di(2-ethylhexyl) adipate	0.400	0.400	ppm				
Di(2-ethylhexyl) phthalate	0.000	0.006	ppm				
Dinoseb	0.007	0.007	ppm				
Dioxin (2,3,7,8-TCDD)	0.000	3.0E-08	ppm				
Diquat	0.020	0.020	ppm				
Endothall	0.100	0.100	ppm				
Endrin	0.002	0.002	ppm				
Epichlorohydrin	0.000	TT	ppm				
Ethylbenzene	0.700	0.700	ppm				
Ethylene dibromide	0.000	0.050	ppb				
Glyphosate	0.700	0.700	ppm				
Heptachlor	0.000	0.400	ppb				
Heptachlor epoxide	0.000	0.200	ppb				
Hexachlorobenzene	0.000	0.001	ppm				
Hexachlorocyclopentadiene	0.050	0.050	ppm				
Lindane	0.200	0.200	ppb				
Methoxychlor	0.040	0.040	ppm				
Oxamyl (Vydate)	0.200	0.200	ppm				
Polychlorinated biphenyls (PCBs)	0.000	0.0005	ppm				
Pentachlorophenol	0.000	0.001	ppm				
Picloram	0.500	0.500	ppm				
Simazine	0.004	0.004	ppm				
Styrene	0.100	0.100	ppm				
Tetrachloroethylene	0.000	0.005	ppm				
Toluene	1.000	1.000	ppm				
Total Organic Carbon	NA	TT	ppm				
Toxaphene	0.000	0.003	ppm				
2,4,5-TP (Silvex)	0.050	0.050	ppm				
1,2,4-Trichlorobenzene	0.070	0.070	ppm				
1,1,1-Trichloroethane	0.200	0.200	ppm				
1,1,2-Trichloroethane	0.003	0.005	ppm				
Trichloroethylene	0.000	0.005	ppm				
Vinyl chloride	0.000	0.002	ppm				
Xylenes (total)	10.000	10.000	ppm				
RADIONUCLIDES							
Alpha particles	0.0	15.0	pCi/L				
Beta particles and photon emitters	0.0	4.0	mrem/yr				
Radium 226 and Radium 228 (combined)	0.0	5.0	pCi/L				
Uranium	0.0	30.0	ppb				
L							

 $\textit{Visit:} \ \underline{\textit{www.epa.gov/safewater/contaminants/index}} \textit{for more information on the sources and health risks of contaminants in these lists}.$

SECONDARY CONTAMINANTS						
aluminum	NA	0.2	ppm			
calcium	NA	NA	ppm			
carbon dioxide	NA	NA	ppm			
chloride	NA	250	ppm			
color	NA	15	units			
copper	NA	1.0	ppm			
corrosivity	NA	non corrosive	units			
fluoride	NA	2.0	ppm			
MBAs	NA	0.5	ppm			
hardness	NA	NA	ppm			
iron	NA	0.3	ppm			
magnesium	NA	NA	ppm			
manganese	NA	0.05	ppm			
nickel	NA	0.1	ppm			
odor	NA	3	units			
рН	NA	6.5-8.5	SU			
silver	NA	0.1	ppm			
sodium	NA	NA	ppm			
specific conductance	NA	NA	umho/cm			
sulfate	NA	250	ppm			
total alkalinity	NA	NA	ppm			
total dissolved solids	NA	500	ppm			
zinc	NA	5	ppm			
OTHER REGULATED	CONTAM	INANTS				
bromoacetic acid	NA	NA	ppb			
dibromoacetic acid	NA	NA	ppb			
chloroacetic acid	0.07	NA	ppm			
dichloroacetic acid	0	NA	ppm			
trichloroacetic acid	0.02	NA	ppm			
bromodichloromethane	0	NA	ppm			
dibromochloromethane	0.06	NA	ppm			
chloroform	0.07	NA	maa			

In addition to the primary drinking water contaminants, this utility monitors regularly for some secondary and unregulated contaminants as required by ADEM. ADEM requires publication of all detections of these contaminants in the Annual Water Quality Report. The required monitoring of unregulated contaminants further insures the quality of your drinking water.

WAIVER

Based on a study conducted by ADEM with the approval of the EPA, a statewide waiver for the monitoring of asbestos and dioxin was issued. Therefore, monitoring for these contaminants was not required.

CONTAMINANTS THAT MAY BE PRESENT IN YOUR WATER

Microbial Contaminants: such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants: such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Organic Chemical Contaminants: including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Pesticides & Herbicides: which may come from a variety of sources such as agricultural operations, urban storm water runoff, and residential uses.

Radioactive Contaminants: which can be naturally occurring or be the result of oil and gas production and mining activities.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at_

http://www.epa.gov/safewater/lead.

For more unregulated contaminants, please visit www.epa.gov/safewater

DEFINITIONS

MAX AMOUNT: THE HIGHEST LEVEL DETECTED OF A CONTAMINANT FOR COMPARISON AGAINST THE ACCEPTABLE LEVEL. THESE LEVELS COULD BE THE HIGHEST SINGLE MEASUREMENT OR AN AVERAGE OF VALUES DEPENDING ON THE CONTAMINANT

MAXIMUM CONTAMINANT LEVEL (MCL): THE HIGHEST LEVEL OF A CONTAMINANT THAT IS ALLOWED BY REGULATION IN DRINKING WATER. MCLS ARE SET AS CLOSE TO MCLGS AS FEASIBLE USING THE BEST AVAILABLE TREATMENT TECHNOLOGY.

MAXIMUM CONTAMINANT LEVEL GOAL (MCLG): THE LEVEL OF A CONTAMINANT IN DRINKING WATER BELOW WHICH THERE IS NO KNOWN OR EXPECTED RISK TO HEALTH. MCLGS ALLOW FOR A MARGIN OF SAFETY.

ACTION LEVEL (AL): THE CONCENTRATION OF A CONTAMINANT WHICH, IF EXCEEDED, TRIGGERS TREATMENT REQUIREMENTS THAT A WATER SYSTEM MUIST FOLLOW

RANGE: THE LOWEST TO THE HIGHEST VALUES FOR ALL SAMPLES TESTED FOR A CONTAMINANT DURING THE SPECIFIED PERIOD. IF ONLY ONE SAMPLE IS TAKEN THERE IS NO RANGE TO REPORT FOR THAT CONTAMINANT.

TREATMENT TECHNIQUE (TT): A REQUIRED PROCESS INTENDED TO REDUCE THE LEVEL OF A CONTAMINANT IN DRINKING WATER.

NA: NOT APPLICABLE

ND: NOT DETECTED

NTU:NEPHELOMETRIC

TURBIDITY UNITS

PCI/L: PICOCURIES

PER LITER (MEASURE

OF RADIOACTIVITY)

PPB: PARTS PER BILLION (MICROGRAMS PER LITER)

LITER

PPM: PARTS PER MILLION (MILLIGRAMS PER

LITER)

 ${\bf UMHO/CM} : {\bf MICROMHOS\ PER\ CENTIMETER}$

SU: STANDARD UNIT

- 1.THE STATE ALLOWS US TO MONITOR FOR SOME CONTAMINANTS LESS THAN ONCE PER YEAR BECAUSE THE CONCENTRATIONS OF THESE CONTAMINANTS DO NOT CHANGE FREQUENTLY.
- SOME OF OUR DATA, THOUGH ACCURATE, IS MORE THAN ONE YEAR OLD.
- ${\bf 2.}$ TURBIDITY IS A MEASURE OF THE CLOUDINESS OF THE WATER. WE MONITOR TURBIDITY
 - BECAUSE IT IS A GOOD INDICATOR OF THE EFFECTIVENESS OF OUR FILTRATION SYSTEM.
- 3. SOME PEOPLE WHO DRINK WATER CONTAINING TRIHALOMETHANES IN EXCESS OF THE MCL OVER MANY YEARS MAY EXPERIENCE PROBLEMS WITH THEIR LIVER, KIDNEYS, AND/OR CENTRAL NERVOUS SYSTEM, AND MAY HAVE AN INCREASED RISK OF DEVELOPING CANCER.
- 4. 2022 DSE RESULTS, ARE INCLUDED IN THE RANGE BUT NOT THE AVERAGE FOR TTHM AND HAA5.UNDER THE EPA STAGE 2 DISINFECTANTS/DISINFECTION BY-PRODUCTS RULE (D/DBPR), OUR PUBLIC WATER SYSTEM WAS REQUIRED TO CONDUCT AN EVALUATION OF OUR DISTRIBUTION SYSTEM. THIS IS KNOWN AS A DISTRIBUTION SYSTEM EVALUATION (DSE), AND IS INTENDED TO IDENTIFY LOCATIONS IN OUR DISTRIBUTION SYSTEM WITH ELEVATED DISINFECTION BY-PRODUCT CONCENTRATIONS. THE LOCATIONS SELECTED FOR DSE MAY BE USED FOR COMPLIANCE MONITORING UNDER STAGE 2 DBPR BEGINNING IN 2023. DISINFECTION BY-PRODUCTS ARE THE RESULT OF PROVIDING CONTINUOUS DISINFECTION OF YOUR DRINKING WATER AND FORM WHEN DISINFECTANTS COMBINE WITH ORGANIC MATTER NATURALLY OCCURRING IN YOUR SOURCE WATER. DISINFECTION BY- PRODUCTS ARE GROUPED INTO TWO CATEGORIES: TOTAL TRIHALOMETHANES (TTHM) AND HALOACETIC ACIDS (HAA5). USEPA SETS STANDARDS FOR CONTROLLING THE LEVELS OF DISINFECTANTS AND DISINFECTION BY-PRODUCTS IN DRINKING WATER, INCLUDING BOTH TTHM AND HAA5.SOME PEOPLE WHO DRINK WATER CONTAINING HALOACETIC ACIDS OR TRIHALOMETHANES IN EXCESS OF THE MCL OVER MANY YEARS MAY EXPERIENCE PROBLEMS WITH THEIR LIVER, KIDNEYS, OR CENTRAL NERVOUS SYSTEM, AND MAY HAVE AN INCREASED RISK OF GETTING CANCER.

DEKALB-JACKSON WATER SUPPLY DISTRICT TABLE OF DETECTED CONTAMINANTS

This table represents all contaminants detected in your drinking water for the monitoring year. For more information on how these contaminants affect the overall quality of your water and your health, please call the EPA Safe Drinking Water Hotline or visit www.epa.gov/safewater.

MIN MAX AVERAGE UNIT MCLG MCL VIO LIKELY SOURCE OF CONTAMINATION

CONTAMINANT	IVIIIV	MAA	AVERAGE	UNII	WICEG	WICL	V10	LIKELI SOURCE OF CONTAMINATION
11 '	1.02	2.142						DUR DRINKING WATER
chlorine	1.02	2.142	1.523	ppm	MRDLG=4	MRDL=4		Water additive used to control microbes Water additive used to control microbes
chlorine dioxide	0	.78	.27	ppm	1.2	.8	N	
copper	0.0026	0.24	0.0256	ppm	1.3	AL= 1.3		Corrosion of household plumbing systems; erosion of natural deposits
lead	ND	0.0024	ND	ppm	0	AL=0.015		Corrosion of household plumbing systems; erosion of natural deposits
nitrate	0.58	0.58	0.58	ppm	10	10		Runoff from fertilizer use, leaching from septic tanks, sewage, erosion of natural deposits
nitrite	ND	ND	ND	ppm	1	1		Runoff from fertilizer use, leaching from septic tanks, sewage, erosion of natural deposits
total haloacetic acids	9.5	150.0*	28.6*	ppb	0	60		By-product of drinking water chlorination *(Incl DSE Non-Compliance Results for 2022)
total organic carbon	.9	9.9	1.99	ppm	NA	TT		Naturally present in the environment
total trihalomethanes	7.5	150.0*	27.2*	ppb	0	80		By-product of drinking water disinfection *(Incl DSE Non-Compliance Results for 2022)
chlorite	.05	.82	.454	ppm		1.0	N	By-product of drinking water disinfection
turbidity	0.003	0.153	0.055	mNTU	NA	TT	N	Soil runoff
alpha particles*	.8 +\- 0.5	.8 +\- 0.5	.8 +\- 0.5	pCi/L	0.0	15.0	N	Erosion of natural deposits of certain minerals that are radioactive and may emit a form of radiation known as alpha radiation *data last obtained 2014 – next sampling date 2023
radium 228 **	.190+\- 0.326	.190+\- 0.326	.190+\ -0.326	pCi/L	0.0	5.0	N	Erosion of natural deposits ** data last obtained in 2020
			SECONDAR	RY CONTA	MINANTS D	ETECTED I	ΝY	OUR DRINKING WATER
aluminum	0.058	0.058	0.058	ppm	NA	0.2	N	-
barium	0.021	0.021	0.021	ppm	NA	NA	N	-
bromide**	.02	.03	.02	ppm	NA	1.2	N	-
calcium	17.9	17.9	17.9	ppm	NA	NA	N	-
carbon dioxide	28.8	28.8	28.8	ppm	NA	NA	N	-
chloride	14.0	14.0	14.0	ppm	NA	250	N	-
color	5.0	5.0	5.0	CU	NA	15	N	-
hardness as CaCO3	61.9	61.9	61.9	ppm	NA	NA	N	-
langelier index	-1.85	-1.85	-1.85	SI	NA	NA	N	-
magnesium	4.2	4.2	4.2	ppm	NA	NA	N	-
manganese	ND	ND	ND	ppm	NA	NA	N	-
рН	6.81	7.75	7.34	SU	NA	NA	N	-
sodium	9.5	9.5	9.5	ppm	NA	NA	N	-
specific conductance	145	145	145	umhos/cm	NA	NA	N	-
sulfate	15.3	15.3	15.3	ppm	NA	250	N	-
total alkalinity	33	78	60.28	ppm	NA	NA	N	-
total dissolved solids	88	88	88	ppm	NA	500	N	-
		O'	THER REGUL		TAMINANT	S DETECT	ED I	N YOUR DRINKING WATER
chloroform	5.9	41.0	19.7	ppb	NA	NA	N	-
bromodichloromethane	1.5	7.7	5.47	ppb	NA	NA	N	-
dibromochloromethane	ND	3.4	2.0	ppb	NA	NA	N	-
bromoform	ND	ND	ND	ppb	NA	NA	N	-
bromoacetic acid	ND	ND	ND	ppb	NA	NA	N	-
dibromoacetic acid	ND	2.0	1.17	ppb	NA	NA	N	-
dichloroacetic acid	5.7	36.0	17.75	ppb	NA	NA	N	-
trichloroacetic acid	2.4	10.0	5.5	ppb	NA	NA	N	-
					NA		N	
chloroacetic acid	ND	ND	ND	ppb	INA	NA	IN	-

UCMR 4 COLLECT/ANALYZED APRIL 2019- JAN 2020		PFAS COLLECTED/ANALYZED JAN – DEC 2020					
UCMR4	Units M	1CL(ug/L)	Range Detected	Likely source of contamination	PFAS COMPOUNDS	Results	Units
alpha-BHC	ug/L	.01	.00310032	Naturally present in the environment	11C1-PF3OUds	ND	ug/L
Chlorpyrifos	ug/L	.03	.00950097	Naturally present in the environment	9C1-PF3ONS	ND	ug/L
Dimethipin	ug/L	.2	.064065	Naturally present in the environment	ADONA	ND	ug/L
Ethoprop	ug/L	.03	.00950097	Naturally present in the environment	HFPO-DA	ND	ug/L
Merphos-Oxone	ug/L	.07	.022022	Naturally present in the environment	NEtFOSAA	ND	ug/L
Oxyfluorfen	ug/L	.05	.016016	Naturally present in the environment	NMeFOSAA	ND	ug/L
Permethrin	ug/L	.04	.012013	Naturally present in the environment	Perflurobutanesulfonic acid	ND	ug/L
Profenofos	ug/L	.3	.095097	Naturally present in the environment	Perflurodecanoic acid	ND	ug/L
Tebuconazole	ug/L	.2	.064065	Naturally present in the environment	Perflurohexanoic acid	ND	ug/L
Butylated Hydroxyanisole	ug/L	.03	.00950096	Naturally present in the environment	Perflurododecanoic acid	ND	ug/L
Quinoline	ug/L	.02	.00640064	Naturally present in the environment	Perfluroheptanoic acid	ND	ug/L
O-Toluidine	ug/L	.007	.00220032	Naturally present in the environment	Perflurohexanesulfonic acid	ND	ug/L
n-Butanol	ug/L	2.0	.6767	Naturally present in the environment	Perflurononanoic acid	ND	ug/L
2-Methoxyethanol	ug/L	.4	.1313	Naturally present in the environment	Perflurooctanesulfonic acid	ND	ug/L
2-Propen-1-ol	ug/L	.5	.1717	Naturally present in the environment	Perflurooctanesulfonic acid	ND	ug/L
Germanium	ug/L	.3	.1010	Naturally present in the environment	Perflurotetradecanoic acid	ND	ug/L
Manganese	ug/L	1.6	.90 - 24.0	Naturally present in the environment	Perflurotridecanoic acid	ND	ug/L
Bromide	ug/L	20	16.1 - 25.7	Naturally present in the environment	Perfluroundecanoic acid	ND	ug/L
UCMR4 CYANOTOXINS	COLLI	ECTED A	AND ANALYZED	APRIL 2020 – JULY 2020	Total PFAs	ND	ug/L

UCMR4 ALGALTOXINS	Results	Units	MCL(ug/L)
Anatoxin	.010	ug/L	.030
Cylindrospermopsin	.030	ug/L	.090
Total Microcystins	.10	ug/L	.30

CONTAMINANT

Dekalb-Jackson Water Supply District purchased **37,766,000** gallons of water from Bridgeport Utilities during the period of January – December 2022. Please find listed below a table of detected contaminants reported by Bridgeport Utilities in their 2022 CCR.

BRIDGEPORT UTILITES TABLE OF DETECTED CONTAMINANTS

Level Detected Units MCLG Contaminant Violation Range Highest MCL Likely source of Contamination and Other Notes 100% Lowest Monthly N NTU 0.17 N/A TT Turbidity percentage of Soil runoff Samples Meeting the Turbidity Limits Alkalinity as CaCO3 N/A 42-72 72 N/A N/A ppm 187 N/A 187 N/A N/A Conductance umhos cm N 0.0239 0.0239 Barium Discharge from metal refineries; erosion of natural deposits ppm Corrosion of household plumbing systems; erosion of natural deposits; N 0.00397-0.175 0.1751.3 leaching from wood preservatives. Copper ppm Water additive which promotes stronger teeth; erosion of natural deposits; 0.078 0.078 4 Fluoride N ppm discharge from fertilizer and aluminum factories N < 0.0005-0.00302 0.00302 0 15 Lead ppb Corrosion of household plumbing systems; erosion of natural deposits Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of Nitrate (as Nitrogen) N 0.628 0.628 ppm 10 10 natural deposits N Total Organic Compound 0.635-2.21 2.21 TT Naturally present in the environment n/a ppm 52 N 13.6-52.0 60 HAA5(Haloacetic Acids) ppb 0 By-product of drinking water chlorination N 14.0-87.3 87.3 ppb 0 80 TTHM(Total Trihalomethanes) By-product of drinking water chlorination N 0.0944 0.2 0.0944 Aluminum ppm Chloride N 13.6 13.6 250 ppm N < 5.00 < 5.00 Units 15 Color Iron N 0.0304 0.03040.3 ppm N 0.0176 0.0176 0.05 Manganese ppb N 0.1Silver < 0.001 < 0.001 ppm Sulfate N 9.26 9.26 250 ppm Total Dissolved Solids N 122 122 500 ppm N 0.00199 0.00199 Zinc ppm N/A 19.7 19.7 Calcium ppm Magnesium N/A 4.05 4.05 ppm N/A 7.1 - 8.18.1 pН pН units Residual Chlorine N 2.0 2.0 4 4 Water additive used to control microbes ppm Sodium N/A 6.51 6.51 ppm Dichloroacetic Acid (DCAA) N/A 4.2-28.0 28.0 ppb Monochloroacetic Acid (MCAA) N/A 0.00 - 4.04.0 ppb Trichloroacetic Acid (TCAA) N/A 5.8-49.5 49.5 ppb 11C1-PF3Ouds* N < 0.0000019 < 0.0000019 ppb N 9C1-PF3ONS* < 0.0000019 < 0.0000019 ppb ADONA* N < 0.0000019 < 0.0000019 ppb HFPO-DA* N < 0.0000019 < 0.0000019 ppb N NEtFOSAA* < 0.0000019 < 0.0000019 ppb NMeFOSAA Ν < 0.0000019 < 0.0000019 ppb Perflurobutanesulfonic < 0.0000019-N 0.0000020acid* 0.0000020ppb ppb Perflurodecanoic acid* N < 0.0000019 < 0.0000019 N Perflurohexanoic acid* < 0.0000019 < 0.0000019 ppb Perflurododecanoic acid* N < 0.0000019 < 0.0000019 ppb N Perfluroheptanoic acid* < 0.0000019 < 0.0000019 ppb N Perflurohexanesulfonic acid* < 0.0000019 < 0.0000019 ppb N < 0.0000019 < 0.0000019 Perflurononanoic acid* ppb -Perflurooctanesulfonic < 0.0000023acid* < 0.0000027 0.0000027ppb Perflurooctanesulfonic acid* N < 0.0000019 < 0.0000019 ppb -Perflurotetradecanoic acid* N < 0.0000019 < 0.0000019 ppb Perflurotridecanoic acid* N < 0.0000019 < 0.0000019 ppb Perfluroundecanoic acid* N < 0.0000019 < 0.0000019 ppb 0.0000043 -N 0.0000047Total PFAs* 0.0000047ppb 13C2-PFDA (S) N 90-93 93 % N 98 % 13C2-PFHxA (S) 92-98 91 % NEtFOSAA-d5 (S) N 84-91 % HFPO-DAS (S) N 90 90

^{*}Research has confirmed that per- and polyfluoroalkyl substances (PFAS) are persistent, bio accumulative, and a health concern. Likely sources are from the production of non-stick coatings for cookware, stain-repellent coatings for clothes and carpeting, detergents, cleaning products, and firefighting foams. Bridgeport did incur a Total Organic Carbon Monitoring Non-Compliance in 2022 because the TOC sampling took place after the scheduled date in the sampling plan.